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ABSTRACT: If one expands the expression of the intensity scattered by polymers or copolymers in the large 
q range, one observes that, for Gaussian chains, this intensity follows a law of the type i (q)  = Aq-2 + Bq4. 
The coefficient A characterizes the length of the statistical element, and the coefficient B is easily measured 
wing the Zimm representation. For a linear chain B gives the number-average degree of polymerization. In 
the case of branched polymers without loops, it depends mainly on the number of statistical elements between 
two cross-links or one cross-link and an end. If the polymer is sufficiently long, it gives the number-average 
degree of polymerization of these branches. A general formula is given and applied to classical examples: 
star, alternating, a comblike copolymer. The effect of polydispersity and the case of block copolymers with 
blocks of different chemical nature are discussed. These results are also extended to stretched polymers. 
This method could give new information in the interpretation of neutron scattering data. 

I. Introduction 
It is well known1 that, regardless of the architecture of 

the molecule, at large angles the scattering of polymer 
chains obeys a law of the form 

I(q)  = kq-"' 
where I (q )  is the intensity scattered as a function of the 
modulus of the scattering vector q = (4dXo) sin(Bi2), where 
ho is the wavelength of the neutron beam and v is the 
swelling exponent defined from the relation R - N" 
between the size R of the chain and the number Nof units; 
k is a prefactor to be evaluated later. 

This type of behavior is well illustrated by the linear 
Gaussian chain. The scattered intensity is directly pro- 
portional to the structure factor I (q )  = b2&!7(q), where q5 
is the volume fraction occupied by the polymer and b2 is 
the contrast factor. The structure factor of a Gaussian 
chain has been calculated by Debye:2 

2 S ( q )  = NP(q)  = -(AN- 1 + exp(-XN)) (1) 

where the parameter X is defined as q2b2i6. b2 is the mean 
square value of the statistical element, and P(q)  is the 
form factor normalized to unity when q = 0. At large 
wave vectors the structure factor decays as S(q) = 2lX. 

The scattered intensity is usually represented either as 
a Kratky3 plot, i.e., q21(q) or U(q) as a function of q2 or 
A, or as a Zimm4 plot where l/I(q) is plotted as a function 
of the same variable (Figure 1). In these representations, 
the large wave vector behavior allows the verification of 
the value of the exponent and gives the length b of the 
statistical element, either from the intercept of the 
horizontal asymptote (Kratky plot) or from the slope of 
the asymptote (Zimm plot). The low wave vector behavior 
(the Guinier5 range) gives access to the molecular weight 
and the radius of gyration. 
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diagram 1 

diagram 2 
Figure 1. Representation of scattering results on Gaussian 
polymers: diagram 1, Kratky plot, q21(q) versus q2; diagram 2, 
Zimm plot, 1/1(q) versus q2. Curve a corresponds to a linear 
polymer, and curve b to a highly branched one. The straight 
lines are the corresponding asymptotes. 

When the size of the polymer is small, the experimental 
window of the q values in classical neutron scattering 
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made of ni monomers; it is given by the Debye function 
(eq 1) where we have replaced N by ni. Sij(q) is the 
interference factor between points k and 1 belonging to 
the blocks i and j :  

(3) 

where the summation is extended to all pairs of points k 
and 1 belonging to segments i and j ,  respectively. A simple 
calculation shows thate 

Sij(q) = rTexp( iq . ( r ik  - rjl)) 
k 

I 15 I 
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Figure 2. Zimm plot of a mixture of usual and deuterated PET 
during transesterification. The straight line defines the asymp- 
tote. 

experiments gives access to both the initial and asymptotic 
parts of the curve. If the polymer is too large (having a 
radius of gyration of more than 500 A), the low q range is 
inaccessible (due to experimental constraints) and the 
experiments are limited to the high q range, i.e., to the tail 
of the curve. 

In many experimental situations, for example when one 
is studying gelation or networks, one is confronted with 
large objects, posing difficulties for the interpretation of 
the small q range. It is therefore interesting to study in 
detail theinformation contained in the tail of the curve. 
For a Gaussian chain an expansion of eq 1 to next order 
gives 

2 2  
A NA2 

S(q) =--- 

The molecular weight of the chain can thus be obtained 
in the Zimm plot from the intercept of the asymptote with 
the horizontal axis. It is clear that if the polymer is 
polydisperse, it is the number-average molecular weight 
which is measured this way6 and not the weight-average 
as in the Guinier range. 

As an example we show in Figure 2 small-angle neutron 
scattering results obtained by Kugler et aL7 on a mixture 
of deuterated and hydrogenated poly(ethy1ene tereph- 
thalate) (PET) of molecular weight of the order of 90 000 
heated a t  280 OC for 10 s and quenched at  room 
temperature. Transesterification occurs and Figure 2 
shows P ( q )  as a function of q2. One sees clearly that the 
only quantities which can be measured accurately are the 
final slope (which corresponds to the nature of the polymers 
and copolymers) and the intercept, which is the quantity 
we are interested in. 

In this paper, we wish to generalize this idea to more 
complex situations. We consider the case of branched 
chains, chains with excluded volume, polydisperse systems, 
chains submitted to a unidirectional force as in an extended 
rubber sample, and block copolymers in a molten phase. 

11. Branched Polymers 
In this section, we discuss the scattering by branched 

polymers. For the sake of simplicity we use Gaussian 
statistics. We first derive a general equation, then consider 
the effect of polydispersity and some specific cases. 

(a) General Equation. The polymer is made of s 
branches having the same length n and has N = sn 
monomers. We define a branch as a linear chain going 
from one cross-link to another one or from one cross-link 
to a free end. The chain has c cross-links of functionality 
f (meaning that f branches start from each cross-link). 
Finally, the chains are Gaussian and no ring structures 
are present; the structure of the chain is thus that of a 
Cayleigh tree or a Bethe lattice. In other words, there is 
only one way to go along the chain from one point to 
another one. We call Si(q) the form factor of one branch 

1 
S&) = -(I - exp(-Ani))(l - exp(-Anj)) exp(-Xmij) (4) 

calling mij the number of units separating the blocks i and 
j .  The total structure factor of the molecule can then be 
decomposed in the following manner: 

A2 

i i j  

Since all branches are identical (ni = n and Si = S), the 
summation over i just gives a factor s equal to the total 
number of branches. The large wave vector expansion of 
the first term is then obtained from eq 2. On the other 
hand, the interference term decays exponentially with q, 
unless mij = 0; therefore, in the large q limit, only 
interferences between blocks coming to the same junction 
point are important. 

The number of pairs of branches present in the molecule 
for an f-functional cross-link is evidentlyfv- l), and since 
there are c cross-links, we obtain c f v -  1) pairs of branches. 
This leads to the following structure factor: 

If we take the inverse in order to use the Zimm repre- 
sentation, we obtain 

(7) 

In the case of chains with no loops there is a simple relation 
between the number of branches and the number of 
junctions of functionality f. If there is only one cross-link 
of functionality f ,  there are f branches in the molecule. 
Each time a new cross-link is added, f - 1 branches are 
added to the molecule. A molecule with c cross-links has 
therefore f + (c - l)<f - 1) = c(f - 1) + 1 branches and 

s - l = c ( f - l )  (8) 
Inserting this value in eqs 6 and 7 leads to 

2 1  S(q) = - + -[ f  - 2 - 51 
A nA2 

These formulas are extremely simple and can be checked 
in all known limiting cases. 

For instance, if one considers a linear chain as made of 
s blocks with junctions of functionality 2, the Debye 
formula is recovered. One can also find the resulta obtained 
by Burchardg and Hammouda'O on dendrimers. It is 
interesting to note that as soon as there is branching, the 
second term in (10) is negative (except for the three-arm 
star for which it vanishes); this means that in the Zimm 
plot the asymptote has a negative intercept and in the 
Kratky plot the curve reaches ita asymptote from above, 
as has been frequently observed on multiarm stars and 
networks. 
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8 large compared to 3, the structure factor reduces to the 
simple form 

If the number s of branches becomes large, f l s  can be 
neglected with respect tof- 2 and the structure factor can 
be approximated by 

A 1  
2 4n S l ( q )  = - - -[f - 21 (11) 

The tail of the scattering curve no longer depends on the 
size of the polymer, and if n is known, one determines f 
or, reciprocally, i f f  is known, one can measure n. An 
example is given in a paper of Khorramian and Stivala'l 
where the authors studied stars and evaluated the terms 
of eq 11, which are in good agreement with what is known 
about the samples. 

(b) Effect of Polydispersity. Up to now we have only 
considered monodisperse systems. Most real systems are 
polydisperse and it is important to take into account the 
effect of polydispersity. This effect is difficult to introduce 
in a general formula since the four variables which 
characterize a branched polymer-n, s, f, and c-can vary 
independently. We shall simplify the problem by taking 
into account the method of preparation. For instance, it 
seems that, regardless of the method, the length and the 
polydispersity of the branches are independent of the 
architecture of the polymer. This allows n to be averaged 
separately. Using the procedure developed for homopoly- 
mers: it is seen that the average to be used is the number 
average ii, defined as ii = CvinilCvi, where vi is the number 
of branches made of ni statistical elements. 

(c) The Case of Stars. A star has only one branching 
point with s = f arms. When one takes into account the 
polydispersity of the length of the arms, eq 9 becomes 

S(q) = 2 + f-3 
A AX2 

(12) 

In this case the only polydispersity left is the polydispersity 
in the functionality f. The average o f f  which must be 
introduced is the weight average fw defined as Cvif?/Cvifi.  
The final result is 

A 1  S-l(q) = - - -[f, - 31 2 4 A  

This gives a method to determine f and n for an unknown 
star. The large-angle scattering provides fwlii, and the 
low-angle neutron scattering (or the light scattering at  
zero angle if the star is too large) provides nwfw. If one 
knows the molecular weight of the arms (which is possible 
for the "arm first" method9, bothf, and the polydispersity 
of the arms nwlii can be determined. This is useful for the 
precise determination of the structure of stars, especially 
when they are used as model polymers made to check 
theoretical predictions. It also extends the analysis 
proposed by Kosmas et al. ,13 who discussed the interpre- 
tation of the zero-angle scattering knowing the polydis- 
persity of the arms. 

(d) The Case of Random Branching. Branched 
polymers are obtained in radical polymerization as, for 
example, in the polymerization of low-density polyeth- 
ylene. In this case f cannot be larger than 3 and there is 
no polydispersity in functionality (when f = 2, the chain 
is linear). Substituting s - 1 = 2c, one can rewrite eq 9 as 

2 ~ s - 3  zS(q) = - 
sax2 

(14) 

To take into account polydispersity, one must average 
11s; this introduces the number-average value 3. Assuming 

2 1  S(q) = - + - 
i i X 2  

(15) 

The length of the segments can be easily measured. Note 
that the second term is positive, contrary to the case of 
the homopolymer. 

(e) The General Case. In the general case, the structure 
factor is given by eq 6 with n replaced by the number 
average ii: 

The polydispersity requires the averaging of fcf - 1). The 
average is written as a function of the average functionality 
rand its variance Af" as [fcf- 1) + Afl.  For each molecule, 
introducings - 1 = ccf- 1) and averaging overs, we obtain 

The result is similar to the monodisperse case but there 
is an extra contribution, due to the variance Af", which 
should not be forgotten. 

111. Chains in a Good Solvent 
Up to now we have assumed that the chains obey 

Gaussian statistics but it is well known that, in a good 
solvent, the excluded volume modifies the form of the 
structure factor. In an athermal solvent and in dilute 
solution the root mean square distance between two 
segments is given by 

p2 = b 2 p  (18) 
where v is a critical exponent which has a value close to 
the Flory13 value 0.6. One first approximation can be to 
assume that the probability distribution remains Gaues- 
ian.15 The large q expansion of the structure factor is 
then obtained as 

1 1 s(q) = 2er(e)-- - 2er(2c)--- 
A€ NX2' 

(19) 

where X = (q2bz)/6 and e = 1/(2v) = 012, calling D the 
fractal dimension of the polymer; R e )  is the classical 
Gamma function. If the system is polydisperse, one 
replaces N by its number average N: 

Equation 20 leads us to believe that all what we have 
said on Gaussian chains can be generalized to chains in a 
good solvent, replacing eq 2 by eq 19, replacing X by A', 
and introducing new constants. This seems to be con- 
sistent with the fact that when one writes e = lt 2 the chains 
behave like rods and eq 20 takes the form (except for the 
numerical coefficients) obtained rigorously for rods.16 It 
seems, even if this procedure has been utilized successfully 
by experimentalists, that one has to be very cautious since 
a direct expansion of the formulas given by Duplantierl' 
a t  first order in 4 - d (where d is the dimension of space) 
does not seem consistent with this result.18 

IV. Stretched Chains 
The structure factor of a chain under a finite tension 

7 is directly obtained from the structure factor of a 
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Gaussian chain (eq 1) by replacing the wave vector q2 with 
an effective wave vector q'2 = q2 - 2 i ~ q I k T  and taking the 
real part of the Debye function.lg 

The expansion at large wave vectors leads to 
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where 9 is the angle between the scattering vector and the 
force. Upon averaging over the orientation of the force, 
we obtain 

where we have introduced the number of monomers of the 
so-called Pincus20 blobg = 6(kT)2/(~2b2);g is such that the 
chains with a number of monomers smaller thang remain 
Gaussian and the chains with a number of monomers larger 
thang are stretched. The intercept of the Zimm plot gives 
in this case a measure of the tension of the chain or of the 
size of the blobs; this could be useful for example in 
stretched gels. 

V. Block Copolymers 
We now study block copolymers of various architecture 

in solution or in the melt (for a review article, see ref 21). 
We consider for the sake of simplicity only block copol- 
ymers made of two types of units called a and b. Within 
a mean field approach such as the RPA the structure 
factors characterizing the copolymer require three 
quantities: Pi the form factor of the blocks made of the 
species a or b and the cross-term P a b  corresponding to 
interferences between the blocks. The copolymer is made 
up of sa segments of length n, and if we ignore the b units 
(and consider only the a units), it has Ca cross-links of 
functionality fa. The structure factor Sa(q)  is given by eq 
6 

Here we have allowed for a polydispersity in the func- 
tionality; cai is the number of cross-links of functionality 
fai. 

When the copolymer is composed of disconnected a 
segments or groups of segments (having no connections 
with other a segments) the structure factor is the sum of 
the structure factor of the individual segments. 

The interference term Pab(q) has no term proportional 
to X-l, and the coefficient of is the s u m  of the fsfb 
contributions of the junctions where fa segments a meet 
with fb segments b 

The scattering behavior a t  large q of systems containing 
copolymers can then be evaluated from eqs 23 and 24. As 
in the case of homopolymers, for a polydisperse system in 
which the length of the branches is independent of the 
structure of the copolymer, the number-average lengths 
of the segments, Ra and f ib ,  must be used. 

To avoid cumbersome equations we now apply these 
formulas to simple examples: the star with arms of 
different nature, the alternating block copolymer, and the 
comb like copolymer. 

One interesting case corresponds to copolymers in the 
bulk. The scattered intensity is calculated using the 
LeiblerZ2 formula. The copolymer is made of N = Sans + 

i 
L" 

Figure 3. Model for a four-arm star with a random cross-link 
point. 

A B  A B A B A B  
Figure 4. Model for an alternating copolymer. 

Sbnb monomeric units. We define its composition by 

= l - u  (25) nbsa 

nasa + nbSb 
and u =  na5a 

nasa + nbSb 
U =  

and obtain for the scattering per monomeric unit 

(26) 

where (n, + nb)ST = naSa + nbSb + 2sab.  

(a) The Four-Arm Star. The first example is a four- 
arm polymer (see Figure 3) made of two chains having 
respectively na and nb monomers and cross-linked a t  an 
arbitrary position along the chains (all the positions of the 
junction point have the same probability). Since we 
assume polydispersity in the position of the branch point, 
we cannot follow the preceding procedure. We divide the 
polymer into two units, one made of a segments and the 
other of b segments. Each subunit has a form factor given 
by the Debye function, S a  or s b ,  corresponding to n, or nb 
monomers. The form factor of the total copolymer reads 

When we average over all positions of the junction, the 
only term to be averaged is the cross term Pab(q). ZimmZ3 
has shown that its average value is given by 

- 
Pab = 'ap, (28) 

Using this result, we obtain the total structure factor: 

(29) 

When n, + nb = 4ii, one recovers the result for a four-arm 
star, f = 4 in eq 11. This illustrates the fact that the 
term is only sensitive to the topology of the chain and not 
to the details of its architecture. 

For a melt of random stars with two branches of different 
nature, eqs 26-29 give the scattered intensity as 

(30) 

(b) The Alternating Copolymer of the Type (A-B)@ 
(Figure 4). This polymer is made of s blocks, each of 
them comprising na monomers a and nb monomers b. The 
total number of monomers in the copolymer is n = ne + 
nb so that n, = nu and nb = n(1- u) = nu; the t o d  number 
of monomers in the copolymer is N = sn. Equation 2 
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The main difference between the linear and the comblike 
copolymers is that the final result, instead of depending 
on the total number of monomers and on the values of il, 
and fib, depends on fib and on the total length of the chain 
a. This is not surprising since the division of this chain 
into subunits is a computational procedure without any 
physical basis. If the chain is very long, 1/Nu can be 
neglected and (s - 1)/N can be approximated by l/(na + 
nb). The scattered intensity depends then on the total 
length of the a part, on the length of the branches, and on 
the structure of the copolymer. 

This list of examples could be very easily extended but 
it is sufficient to prove that the second term in the 
expansion of the intensity a t  large wave vectors depends 
only on the length of the different kinds of segments from 
which the chain has been built. In all the examples, we 
have calculated the scattering in the bulk using eq 26 which 
leads to a combination of Pa, Pb,  and Pab or PT. For a 
copolymer solution, the three functions can be measured 
independently by contrast matching of one of the species 
a or b. More detailed information on the copolymer can 
be obtained. 

B B B B B B 

A A A A  A A A A  

Figure 5. The comblike copolymer. 

applied to the a part of the copolymer gives 
2 2 2  1 Sa(q) = - - - - nuX2 - xil-xnu) 

A similar result is obtained for the b part by replacing 
a by b and u by 1 - u = u. The evaluation of i(q) using 
eq 26 requires the value of Sab. A careful examination 
shows that if one limits the expansion of i(q) to the second 
term in X-', the contribution of s a b 2  to i(q) can be neglected. 
One has therefore the choice of evaluating ST either directly 
or using the formula (see eq 4) 

s(na + nb)ST(q) = snaS,(q) + snbSb(q) + sab(q) (32) 
The determination of ST is straightforward: 

(33) 

Replacing sa, s b ,  and ST by their values leads to 

For systems with polydisperse blocks nu, nu, and M are 
replaced by their number averages: 

This formula has already been obtained8and used to study 
the transesterification reaction.24 

(c) The  Comblike Copolymer (Figure 5). A third 
example is the case of a comblike polymer made of a 
skeleton a of Sa segments on which are grafted s b  chains 
of nature b. This copolymer has c = s cross-links of 
functionality 3 (2 for the blocks a and 1 for the blocks b), 
sa = s + 1 and Sb = s. The general formula gives 

Sa(@ = fL1-  l l  (36) 
na(s + 1)X 

since the a blocks form a classical Gaussian chain of (s + 
l)na statistical elements. 

For s b  we obtain 

(37) 

The evaluation of Pab is made from eq 24 in which we set 

sa, = 2N(N +- l)nanbP,b(q) = 2S/X2 (38) 

As before, we define N = na(s + 1) + n p  and the 
composition of the copolymer u = na(s + l)/(na(S + 1) + 
np);  this gives 

C = S, fa = 2, and fb = 1: 

(39) 

and, using eq 34, the scattering intensity 

If the system is polydisperse, with the same structure, one 
has to replace n,, nb, and N by their number averages. 

VI. Conclusions 
The aim of this paper was to show that the first correction 

to the asymptotic behavior of the structure factor of 
polymers a t  large wave vectors gives important informa- 
tion. This has been illustrated by many examples, and in 
most cases this correction to the asymptotic behavior 
depends only on the local architecture of the chain. In 
particular, it does not depend on the overall size of the 
molecules when the small-scale structure is kept constant. 
This can be shown in the general case by taking the limit 
of large s in eq 17: 

S(q)=-+-  1 -2+: (41) 
f iX2  

None of the parameters used in this formula depends on 
the size of the molecule. In practice, this means that, if 
the size of a branched polymer increases in a polymeri- 
zation reaction, after a certain size (which depends on the 
window of the experimentally accessible q values), the 
scattering function no longer changes and depends only 
on the size of the branches. This result is even more 
obvious for monodisperse block copolymers8 of any 
structure for which the total scattering function is inde- 
pendent of the size of the molecule. Experimentally, this 
has been verified by comparing the scattering by copolymer 
stars and by a network prepared using these stars as 
building blocks; no explanation was then proposed to 
explain this p h e n o m e n ~ n . ~ ~  

One of the experimental problems which must be solved 
in each case is to recognize the range of q for which our 
approximations are valid. The only rule is that the length 
of all the chains which we have called segments should be 
large enough in order to neglect the factor exp(-An). This 
requires, to give an order of magnitude, that n must be at 
least larger than the persistence length of the copolymer. 
As an example one can say that this kind of experiment 
does not allow the measurement of short chain branching 
in polyethylene. 

One last remark concerns the existence of loops in the 
structure. We have supposed throughout that there is 
only one path to go from one scattering point to another 
one and we therefore have ignored any loops. The 
application of our results to networks and gels is then 
hazardous. Experimentally, however, it is observed that 
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the scattering function of an elastic chain in a network is 
the same as the scattering function in the same environ- 
ment but without any coupling of the precursor;26 this 
suggests that one can neglect the existence of the loops. 
A qualitative argument in the same direction has been 
developed by Krause et al.,27 and more quantitative 
treatment shows that the results obtained here are only 
slightly modified when one takes into account the existence 
of loops.28 
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